5-(A lk-1-enyl)-1,2,3,6-tetrahydropyridines as congeners of streptazolin

M artin K ratzel* and A lexander W eigl

Institut für P harmazeutische C hemie der U niversität W ien, A lthanstraße 14, A-1090 W ien, A ustria

Abstract

The synthesis of 1,3 -dienes which are structurally related to streptazolin, a unique natural compound with antibiotic and antifungal activities, is described. Mimicking of two suggested pharmacophoric units leads to compounds with enhanced chemical stability but without any satisfactory gain in antibiotic activity.

Streptazolin 1, a unique natural product, was first described by D rautz et al. who isolated it from cultures of Streptomyces viridochromogenes and demonstrated its antibiotic and antifungal activity. ${ }^{1,2}$

U nfortunately, streptazolin is unstable in the solid state due to its tendency to undergo partial polymerisation. The 1,4 dihydro derivative $\mathbf{2}$ which is available by catalytic hydrogenation of 1 shows satisfactory stability but has reduced antibiotic activity. ${ }^{1}$ Stimulated by its exceptional structure (and the impetus to synthesise a compound which is difficult to handle), three total syntheses of streptazolin have so far been reported. The first one, realised by Kozikowski and Park, ${ }^{3,4}$ furnished racemic streptazolin, while F Iann and Overman ${ }^{5}$ have demonstrated a strategy to the enantiomerically pure compound. Both approaches furnished streptazolin as inseparable mixtures of the ethylidene stereoisomers. Recently Y amada et al. ${ }^{6}$ reported the stereoselective total synthesis of natural $(+)$-streptazolin with uniform (Z)-ethylidene stereochemistry.

From the pharmaceutical point of view, streptazolin is far from being an ideal antibiotic, since it possesses limited activity and is, moreover, of low stability. Thus, attempts have been made to synthesise derivatives of streptazolin with improved properties. ${ }^{7,8}$ Our goal is to produce streptazolin congeners which are available by a simple synthetic approach and have improved pharmacological and physical features.

At first, as described here, we tried to mimic two assumed pharmacophoric moieties of streptazolin, the diene system and the urethane unit, by creating a single ring system with the general structure 3. As a starting compound for the synthesis we chose arecoline 4 which is commercially available.

Replacement of the N -methyl group in 4 by an alkoxycarbonyl group leading to 5 can be directly achieved by heating

2
of arecoline with the appropriate chloroformate in toluene ${ }^{9}$ This starting reaction not only provides advantageous protection of the amino function with regard to the following steps but also offers the opportunity of modifying the pharmacokinetic properties of the target molecule by variation of the urethane moiety using different chloroformates as acylating reagents.
In the subsequent preparation of the ketone 7 by coupling with organometallics, the problem of reactive G rignard or organolithium reagents overadding to the substrate, producing a tertiary alcohol, was encountered. In view of this, we decided to employ Weinreb's strategy to control the exclusive formation of the carbonyl compound by using N -methoxy-N methylamides 6 as key intermediates. ${ }^{10} \mathrm{H}$ owever, the direct conversion of the ester moiety into the N -methoxy- N -methylamide by reaction with $\left(\mathrm{Me}_{2}\right) \mathrm{AIN}(\mathrm{Me}) O M \mathrm{e}^{11}$ failed. Thus, the conventional route via hydrolysis of the ester 5 to the acid 8, with intermediate formation of the acid chloride, and final conversion to the N-methoxy- N-methylamide 6 was chosen
The reductive alkylation of 6 was realised by reaction with methyllithium or methylmagnesium bromide to yield the ketone 7 in good yield. Finally, the diene $\mathbf{3}$ was prepared by Wittig olefination with ethyl(triphenyl)phosphonium bromide. A Iternatively, the ketone $\mathbf{7}$ was alkylated by a second organometallic compound (ethylmagnesium bromide) and then dehydrated with phosphoric acid or hydrochloric acid in tetrahydrofuran to give 3.
A s in the first two total syntheses of the target compound $\mathbf{1}$, the dienes $\mathbf{3}$ were formed as E / Z mixtures in the olefination step (see Experimental section). U p to now, attempts to separate the isomers by HPLC have failed. H owever, the isomer ratio could be determined by GC and additionally deduced from separated peaks of the two isomers in the ${ }^{1} \mathrm{H}$ N M R spectrum. Of course, in contrast to streptazolin, the diene system is not frozen into the cisoid conformation. The assignment of the ${ }^{1} \mathrm{H}$ signals to the isomers could be achieved by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation experiments. Nevertheless, an unequivocal identification as the E or Z isomer was prevented by signal overlapping. U nfortunately, the preparation of the 1^{\prime}-dealkyl derivative $\mathbf{1 0}$, containing a proton capable of coupling with the vicinal $2^{\prime}-\mathrm{H}$, did not give additional information about E / Z isomerism. Compound $\mathbf{1 0}$ was readily available via the aldehyde 9 which was synthesised by DIBAL-H reduction of N -methoxy-Nmethylamide 6
The dienes $\mathbf{3}$ (and 10, respectively) show remarkable stability in comparison with streptazolin itself. Compounds $\mathbf{3}$ and $\mathbf{1 0}$ can be stored as solids for several months without degradation.

In plate diffusion tests, the dienes exhibit very limited anti-

Scheme 1 Reagents and conditions: i, ROCOCI, toluene, heat; ii, NaOH (2 м); iii, $\mathrm{M} \mathrm{e}_{2} \mathrm{AlN}(\mathrm{Me}) \mathrm{OMe} \mathrm{Et}_{2} \mathrm{O}$; iv, SOCl_{2}, heat; v, MeN $\mathrm{HOMe} \cdot \mathrm{HCl}$, pyridine, CHCl_{3}; vi, $\mathrm{MeLi}\left(\mathrm{MeMgBr}\right.$), THF, $0^{\circ} \mathrm{C}$; vii, $\mathrm{MeCH}{ }_{2} \mathrm{P}\left(\mathrm{Ph}_{3}\right) \mathrm{Br}$, BuLi, EtO; viii, EtM gBr, Et O , heat; $\mathrm{ix}, \mathrm{H}_{3} \mathrm{PO}_{4}$ or HCl , heat; $\mathrm{x}, \mathrm{DIBAL}-\mathrm{H}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$
biotic and antifungal activity. The in vitro antibacterial activity was tested against Staphylococcus aureus, coagulase-negative Staphylococcus and E. coli, and the antifungal activity against Candida albicans. The best values were detected with $\mathbf{3}$ against Candida albicans (full inhibition of growth at a concentration of $400 \mu \mathrm{~g} \mathrm{~cm}^{-3}$).

In conclusion, this work has demonstrated that exclusive mimicking of the diene system and the urethane moiety provides compounds with enhanced stability but without any satisfactory gain in biological activity. In further work, the mimicry of streptazolin will also consider the oxygen functionality of the cyclopentane ring.

Experimental

M ps were determined on a K ofler microscope apparatus. IR Spectra were recorded on a Perkin-EImer 298 instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR Spectra were measured on Bruker AC 80 and Varian U nity-plus 300 instruments [${ }^{1} \mathrm{H}$ NMR: tetramethylsilane as internal standard, J values given in Hz; ${ }^{13} \mathrm{C}$ NMR: chemical shifts are given in ppm relative to the resonance of $\left.\mathrm{CDCl}_{3}(\delta 77.0)\right] . \dagger \mathrm{M}$ ass spectra were determined on a Hewlett Packard G C-M S equipment (H P-5890A , H P-5970C, H P-59970).

1,2,5,6-Tetrahydropyridine-1,3-dicarbox ylates 5

General procedure. To a mixture of arecoline $4(1.55 \mathrm{~g}, 10$ mmol) and potassium carbonate ($690 \mathrm{mg}, 5 \mathrm{mmol}$) in dry toluene ($30 \mathrm{~cm}^{3}$), heated under reflux, was added the selected chloroformate (11 mmol) dropwise by means of a syringe. Heating was continued for 3 h , after which the reaction mixture was concentrated in vacuo and the residue was partitioned

[^0]between water and ethyl acetate The aqueous layer was extracted with ethyl acetate $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were washed with hydrochloric acid ($2 \mathrm{~m} ; 2 \times 10 \mathrm{~cm}^{3}$) and brine ($2 \times 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to yield 5 as a colourless to yellow oil.
1-E thyl 3-methyl 1,2,5,6-tetrahydropyridine-1,3-dicarboxylate 5a. Prepared by treatment of arecoline $\mathbf{4}$ with ethyl chloroformate ($1.1 \mathrm{~cm}^{3}, 11 \mathrm{mmol}$); a yellow oil ($1.80 \mathrm{~g}, 85 \%$) (Found: C, 56.6; H, 7.35; N, 6.55. $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{4}$ requires C, 56.3; $\mathrm{H}, 7.1 ; \mathrm{N}$, $6.6 \%) ; v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$; liquid film)/ $\mathrm{cm}^{-1} 1730$ and $1700(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(80$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{t}\right.$, J $\left.7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.35(2 \mathrm{H}, \mathrm{m}, 3-$ H), $3.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.16(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ 2.4, 6-H $), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $7.10(1 \mathrm{H}, \mathrm{m}, 4-$ $\mathrm{H}) ; \delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 14.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.9(3-\mathrm{C}), 38.7$ $(2-\mathrm{C}), 42.1(6-\mathrm{C}), 51.1\left(\mathrm{OCH}_{3}\right), 60.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 127.7(5-\mathrm{C})$, 137.3 (4-C), $155.0(\mathrm{~N}-\mathrm{C}=0)$ and $165.0(\mathrm{C}=0)$; m/z $213(\mathrm{M}+$).

1-I sobutyl 3-methyl 1,2,5,6-tetrahydropyridine-1,3-dicarboxylate 5 b. Prepared by treatment of arecoline 4 with isobutyl chloroformate ($1.5 \mathrm{~cm}^{3}, 11 \mathrm{mmol}$); a yellow oil ($1.90 \mathrm{~g}, 85 \%$) (Found: C, 60.0; $\mathrm{H}, 7.7 ; \mathrm{N}, 5.8 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, $59.7 ; \mathrm{H}$, 7.9; N , 5.8\%); $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$; liquid film)/cm ${ }^{-1} 1720$ and 1700 ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.90$ [1 H , sept, J 6.6, $\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $2.35(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.45(2$ $\mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.90[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$, $\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $4.17(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 2.4,6-\mathrm{H})$ and $7.10(1 \mathrm{H}, \mathrm{m}, 4-$ $\mathrm{H}) ; \delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 18.9\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 25.3(3-\mathrm{C})$, $27.8\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 39.2(2-\mathrm{C}), 42.4(6-\mathrm{C}), 51.5\left(\mathrm{OCH}_{3}\right)$, $71.5\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 128.1(5-\mathrm{C}), 137.6(4-\mathrm{C}), 155.4(\mathrm{~N}-$ $\mathrm{C}=0$) and $165.4(\mathrm{C}=0)$; m/z $241(\mathrm{M}+$).

Hydrolysis of 5 to 8

General procedure. The ester 5 (10 mmol) was suspended in aqueous NaOH ($2 \mathrm{~m} ; 30 \mathrm{~cm}^{3}$) and the suspension was stirred at room temperature for $10-12 \mathrm{~h}$. The resulting solution was carefully acidified with hydrochloric acid (2 m) at $0^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with water ($2 \times 10 \mathrm{~cm}^{3}$) and brine ($2 \times 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo. The crude product was purified by recrystallisation or column chromatography.
1-E thoxycarbonyl-1,2,5,6-tetrahydropyridine-3-carboxylic acid 8a. C olourless crystals ($1.85 \mathrm{~g}, 90 \%$), mp $73-75^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 54.45 ; \mathrm{H}, 6.6 ; \mathrm{N}, 6.8 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C, 54.3; $\mathrm{H}, 6.6 ; \mathrm{N}$, $7.0 \%)$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$; liquid film) $/ \mathrm{cm}^{-1} 3160(\mathrm{OH})$ and 1720,1680 ($\mathrm{C}=0$) ; $\delta_{\mathrm{H}}\left(80 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.35$ $(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.55(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 4.18(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 2.4,6-\mathrm{H})$, $4.18\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 7.30(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $10.02(1$ $\mathrm{H}, \mathrm{br}, \mathrm{OH}$); $\delta_{\mathrm{H}}\left(20.12 \mathrm{M} \mathrm{Hz;CDCl} 3\right.$) $14.5\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 25.4 (3C), 39.1 (2-C), $42.2(6-\mathrm{C}), 61.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 127.7(5-\mathrm{C}), 139.7$ (4-C), 155.6 ($\mathrm{N}-\mathrm{C}=0$) and 169.5 ($\mathrm{C}=0$); m/z 199 (${ }^{+}$).
1-I sobutox ycarbonyl-1,2,5,6-tetrahydropyridine-3-carboxylic acid 8b. Colourless crystals ($2.10 \mathrm{~g}, 90 \%$), mp 89-91 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 58.4 ; \mathrm{H}, 7.4 ; \mathrm{N}, 6.05 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{C}, 58.1 ; \mathrm{H}, 7.5$; $\mathrm{N}, 6.2 \%$); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2}\right) / \mathrm{cm}^{-1} 3160(\mathrm{OH})$ and 1730, $1660(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.95\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.96$ [1 H, sept, J 6.6, OCH 2 CH ($\left.\mathrm{CH}_{3}\right)_{2}$], $2.36(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, 3.56 (2 $\mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 3.91\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.18(2$ $\mathrm{H}, \mathrm{q}, \mathrm{J} 2.4,6-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$ and $10.08(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; $\delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 18.9\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 25.4(3-\mathrm{C}), 27.8$ $\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], \quad 39.2(2-\mathrm{C}), 42.2(6-\mathrm{C}), \quad 71.8 \quad\left[\mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 127.7(5-\mathrm{C}), 139.7(4-\mathrm{C}), 155.7(\mathrm{~N}-\mathrm{C}=0)$ and 169.5 ($\mathrm{C}=0$) ; m/z $227\left(\mathrm{M}^{+}\right)$.

N -M ethoxy-N-methylcarboxamides 6

General procedure. The carboxylic acid 8 (10 mmol) was refluxed in thionyl chloride ($15 \mathrm{~cm}^{3}$) for 1.5 h . The excess of thionyl chloride was removed by distillation and the residue was dissolved in dry toluene and the solution concentrated in vacuo several times to remove residual thionyl chloride. The resulting orange oil was redissolved in dry CHCl_{3} and treated with N -methoxy-N -methylhydroxylamine hydrochloride (1.1 g, 11
$\mathrm{mmol})$. The solution was then cooled to $0^{\circ} \mathrm{C}$ and treated with pyridine ($1.80 \mathrm{~cm}^{3}, 22 \mathrm{mmol}$). A fter the mixture had been stirred at $0^{\circ} \mathrm{C}$ for 10 min the ice-bath was removed, and the reaction was allowed to proceed at $20^{\circ} \mathrm{C}$ for 1 h . A fter concentration of the reaction mixture in vacuo the residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hydrochloric acid (0.5 m); the organic layer was separated, washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to dryness in vacuo. The resulting amides were purified by column chromatography.

E thyl 3-(N-methoxy-N-methylcarbamoyl)-1,2,5,6-tetrahydro-pyridine-1-carboxylate 6 a . Starting from $8 \mathrm{a}(2.00 \mathrm{~g}, 10 \mathrm{mmol})$, 6a ($1.80 \mathrm{~g}, 74 \%$) was obtained as a light yellow oil after column chromatography (ethyl acetate) (Found: C, 54.3; H , 7.3; N, 11.3. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 54.5; H, 7.5; $\mathrm{N}, 11.6 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}$; liquid film) $/ \mathrm{cm}^{-1} 1700$ and $1650(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(80 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $1.26\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.35(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.25(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.15(2 \mathrm{H}$, q, J $2.4,6-\mathrm{H}), 4.15\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $6.50(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}$); $\delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3\right.$) $14.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.2(3-\mathrm{C}), 32.7$ $\left(\mathrm{NCH}_{3}\right), 39.0(2-\mathrm{C}), 42.7(6-\mathrm{C}), 60.4\left(\mathrm{OCH}_{3}\right), 60.6\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $130.0(4-\mathrm{C}), 130.7(5-\mathrm{C}), 154.7(\mathrm{~N}-\mathrm{C}=0)$ and $167.7(\mathrm{C}=0)$; m/z $211\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$.
I sobutyl 3-(N-methoxy-N-methylcarbamoyl)-1,2,5,6-tetra-hydropyridine-1-carboxylate $\mathbf{6 b}$. Starting from $\mathbf{8 b}$ ($2.20 \mathrm{~g}, 10$ $\mathrm{mmol}), 6 \mathrm{~b}(1.90 \mathrm{~g}, 70 \%)$ was obtained as an orange oil after column chromatography (ethyl acetate) (Found: C, 57.5; H, 8.45; $\mathrm{N}, 10.2 . \mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 57.8 ; \mathrm{H}, 8.2 ; \mathrm{N}, 10.4 \%$); $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$; liquid film)/ $/ \mathrm{cm}^{-1} 1700$ and $1655(\mathrm{C}=0) ; \delta_{\mathrm{H}}(80 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 0.83\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,0 \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.90[1 \mathrm{H}$, septet, J 6.6, $\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $2.21(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.09(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.46(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80[2 \mathrm{H}$, d, J 6.6, $\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $4.12(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 2.4,6-\mathrm{H})$ and $6.40(1$ $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 18.9\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $24.7(3-\mathrm{C}), 27.7\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 33.3\left(\mathrm{NCH}_{3}\right), 39.4(2-\mathrm{C})$, $43.2(6-\mathrm{C}), 61.0\left(\mathrm{OCH}_{3}\right), 71.5\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 130.6(4-\mathrm{C})$, $137.9(5-\mathrm{C}), 155.4(\mathrm{~N}-\mathrm{C}=0)$ and 168.4 ($\mathrm{C}=0$); m/z 239 $\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$.

Ketones 7

General procedure. To a solution of N -methoxy-N methylamide (10 mmol) in dry THF ($60 \mathrm{~cm}^{3}$) was added the appropriate organometallic reagent (12 mmol) under argon at $0^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction mixture was stirred for 1.5 h ; the reaction was then quenched by addition of cold hydrochloric acid (1 m) to the mixture. The mixture was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water and the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The resulting ketone $\mathbf{7}$ was purified by column chromatography (ethyl acetate).

Ethyl 3-acetyl-1,2,5,6-tetrahydropyridine-1-carboxylate 7a. For the preparation of 7 a methyllithium ($1.6 \mathrm{~m} ; 7.5 \mathrm{~cm}^{3}$) was used as the organometallic reagent. Column chromatography afforded 7a as colourless crystals ($1.50 \mathrm{~g}, 75 \%$), mp $132-134^{\circ} \mathrm{C}$ (Found: C, 61.1; $\mathrm{H}, 7.8 ; \mathrm{N}, 7.2 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{3}$ requires $\mathrm{C}, 60.9 ; \mathrm{H}$, 7.7; $\mathrm{N}, 7.1 \%) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700$ and $1660(\mathrm{C}=0) ; \delta_{\mathrm{H}}(80$ $\left.\mathrm{MHz} \mathrm{CDCl}_{3}\right) 1.30\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.28(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{COCH}_{3}\right), 2.40(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.55(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 4.12(2 \mathrm{H}$, q. J $2.4,6-\mathrm{H}), 4.10\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $6.98(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}) ; \delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.3\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 24.7\left(\mathrm{COCH}_{3}\right)$, $25.3(3-\mathrm{C}), 38.9(2-\mathrm{C}), 41.6(6-\mathrm{C}), 61.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 136.8(5-\mathrm{C})$, $138.4(4-\mathrm{C}), 155.2(\mathrm{~N}-\mathrm{C}=0)$ and 196.7 ($\mathrm{C}=0$); m/z $197\left(\mathrm{M}^{+}\right)$.
Isobutyl 3-acetyl-1,2,5,6-tetrahydropyridine-1-carboxylate 7b. For the preparation of $\mathbf{7 b}$ methyllithium ($1.6 \mathrm{~m} ; 7.5 \mathrm{~cm}^{3}$) was used as the organometallic reagent. Column chromatography yielded 7b as a yellow oil ($2.07 \mathrm{~g}, 92 \%$) (Found: C, 63.7; H, 8.4; $\mathrm{N}, 6.1 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 63.9 ; \mathrm{H}, 8.5 ; \mathrm{N}, 6.2 \%\right)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1700$ and $1660(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(80 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 0.89[6 \mathrm{H}, \mathrm{d}$, J 6.6, OCH $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.02\left[1 \mathrm{H}\right.$, septet, J 6.6, $\mathrm{OCH}_{2} \mathrm{CH}$ $\left(\mathrm{CH}_{3}\right)_{2}$], $2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 2.37(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.60(2 \mathrm{H}$,
t, J 5.6, 2-H), $3.86\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.07(2$ $\mathrm{H}, \mathrm{q}, \mathrm{J} 2.4,6-\mathrm{H})$ and $7.01(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ $19.1\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 24.8\left(\mathrm{COCH}_{3}\right), 25.0(3-\mathrm{C}), 27.9\left[\mathrm{OCH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 39.3(2-\mathrm{C}), 42.1(6-\mathrm{C}), 71.7\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 137.9 (4-C), 139.0 (5-C), 155.6 ($\mathrm{N}-\mathrm{C}=0$) and 196.1 ($\mathrm{C}=0$); m/z 225 (M+).
I sobutyl 3-formyl-1,2,5,6-tetrahydropyridine-1-carboxylate 9b. To a solution of $\mathbf{6 b}(270 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$, was added DIBAL-H ($1 \mathrm{~m} ; 2 \mathrm{~cm}^{3}, 2 \mathrm{mmol}$) by means of a syringe under argon at $0^{\circ} \mathrm{C}$. A fter 0.5 h the reaction was quenched by the addition of water to the reaction mixture which was then extracted with diethyl ether ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated in vacuo and the residue was purified by column chromatography (diethyl ether) to give $\mathbf{9 b}$ ($200 \mathrm{mg}, 95 \%$) as a colourless oil (Found: $\mathrm{C}, 62.4 ; \mathrm{H}, 8.2 ; \mathrm{N}, 6.6 . \mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.5$; $\mathrm{H}, 8.1 ; \mathrm{N}, 6.6 \%)$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$; liquid film)/ $\mathrm{cm}^{-1} 1700$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.88\left[6 \mathrm{H}, \mathrm{d}\right.$, J $6.9, \mathrm{OCH}_{2}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 1.71[1H , septet,] 6.9, OCH ${ }_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $2.41(2 \mathrm{H}$, brs, $3-\mathrm{H}), 3.55$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.6,2-\mathrm{H}), 3.83\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.10(2$ $\mathrm{H}, \mathrm{br}, 6-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{H})$ and $9.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} 0) ; \delta_{\mathrm{c}}(20.12$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.1\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 26.1(3-\mathrm{C}), 27.9\left[\mathrm{OCH}_{2}-\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 39.7(2-\mathrm{C}), 40.8(6-\mathrm{C}), 71.8\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $137.9(4-\mathrm{C}), 155.6(\mathrm{~N}-\mathrm{C}=0)$ and $191.5(\mathrm{C}=0)$; m/z $211\left(\mathrm{M}^{+}\right)$.

Preparation of dienes 3 (10) by Wittig reaction of 7 (9)

General procedure. To a suspension of carefully dried and pulverised ethyl(triphenyl)phosphonium bromide ($3.7 \mathrm{~g}, 10$ mmol) in dry diethyl ether, was added butyllithium ($1.6 \mathrm{~m} ; 6.3$ $\mathrm{cm}^{3}, 10 \mathrm{mmol}$) under argon at $0^{\circ} \mathrm{C}$. Dissolution of the salt and formation of the red ylide occurred within 15 min . A solution of the carbonyl compound $\mathbf{7}$ (or 9) (10 mmol) in dry diethyl ether ($40 \mathrm{~cm}^{3}$) was then added dropwise to the mixture by means of a syringe at room temperature. After the reaction mixture had been stirred under reflux for 4 h , it was cooled to room temperature and filtered to remove triphenylphosphine oxide. The resulting filtrate was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. The product was purified by column chromatography on silica gel.

E thyl 3-(1-methylprop-1-enyl)-1,2,5,6-tetrahydropyridine-1carboxylate 3a. Column chromatography (diethyl ether-light petroleum, 1:1) gave a yellow oil ($1.50 \mathrm{~g}, 72 \%$) which consisted of a mixture of geometric isomers 3a in a ratio of $1: 2(\mathrm{~A}: \mathrm{B})$ (Found: C, 69.1; $\mathrm{H}, 9.2 ; \mathrm{N}, 6.7 . \mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N} \mathrm{O}_{2}$ requires C, 68.9; H, $9.15 ; \mathrm{N}, 6.7 \%)$; $v_{\max }\left(\mathrm{K} \mathrm{Br}\right.$; liquid film)/cm ${ }^{-1} 1700(\mathrm{C}=0)$; $\delta_{\mathrm{H}}(300$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) isomer A: $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.73$ (3 $\left.\mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,3^{\prime}-\mathrm{H}\right), 1.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{I}^{\prime}-\mathrm{CH}_{3}\right), 2.23(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.53$ $(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.12(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 4.16(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.55\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 5.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$; isomer B: $1.27\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1,3^{\prime}-\mathrm{H}\right), 1.77$ ($3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{3}$), $2.23(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.53(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.87$ (2 $\mathrm{H}, \mathrm{br}, 6-\mathrm{H}), 4.16\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.2, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 5.34(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.4$, $\left.2^{\prime}-\mathrm{H}\right)$ and $5.55(1 \mathrm{H}, \mathrm{br} 5,4-\mathrm{H})$; $\delta_{\mathrm{c}}\left(100.62 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 13.2$ ($1^{\prime}-\mathrm{CH}_{3}$ of isomer B), 13.9 ($3^{\prime}-\mathrm{C}$ of isomer A), 14.6 ($3^{\prime}-\mathrm{C}$ of isomer B), $14.7\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 23.4$ ($1^{\prime}-\mathrm{CH}_{3}$ of isomer A), 25.1 (3-C of isomer B), 25.0 (3-C of isomer A), 40.0 (2-C), 43.7 ($6-\mathrm{C}$ of isomer A), $44.7(6-\mathrm{C}$ of isomer $B), 61.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 119.1$ ($4-\mathrm{C}$ of isomer B), 120.0 ($4-\mathrm{C}$ of isomer A), 121.8 ($2^{\prime}-\mathrm{C}$), 133.5 ($1^{\prime}-\mathrm{C}$), 135.6 ($5-\mathrm{C}$) and 156.2 ($\mathrm{N}-\mathrm{C}=0$); m/z 209 (M^{+}).
I sobutyl 3-(1-methylprop-1-enyl)-1,2,5,6-tetrahydropyridine-1-carboxylate 3b. Column chromatography (diethyl ether-light petroleum, 1:1) gave a colourless oil ($1.32 \mathrm{~g}, 55 \%$) which consisted of a mixture of geometric isomers $\mathbf{3 b}$ in a ratio of 5:3 (A:B) (Found: C, 71.0; $\mathrm{H}, 9.9 ; \mathrm{N}, 5.9 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires C , 70.85; H, 9.8; N , 5.9\%); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}\right.$; liquid film)/ $\mathrm{cm}^{-1} 1690$ ($\mathrm{C}=0$); $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ isomer $\mathrm{A}: 0.95\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{OCH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.72\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.8,3^{\prime}-\mathrm{H}\right), 1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{I}^{\prime}-\mathrm{CH}_{3}\right)$, $1.95\left[1 \mathrm{H}\right.$, septet, J $\left.6.4, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.25(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$, $3.52(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.90\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.13(2$ H, br s, 6-H), $5.55\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 5.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H})$; isomer

B: $0.95\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$], $1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.1,3^{\prime}-\right.$ H), $1.78\left(3 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{CH}_{3}\right), 1.95\left[1 \mathrm{H}\right.$, septet, J 6.4, $\mathrm{OCH}_{2}{ }^{-}$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, $2.25(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.52(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.90(2 \mathrm{H}$, hidden, $6-\mathrm{H}), 3.90\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.35(1 \mathrm{H}, \mathrm{q}$, J 6.4, $\left.2^{\prime}-\mathrm{H}\right)$ and $5.55(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100.62 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 13.2 ($1^{\prime}-\mathrm{CH}_{3}$ of isomer B), 13.9 ($3^{\prime}-\mathrm{C}$ of isomer A), 14.6 ($3^{\prime}-\mathrm{C}$ of isomer B$), 19.1\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 23.5\left(1^{\prime}-\mathrm{CH}_{3}\right.$ of isomer A), 24.8 (3-C of isomer B), 25.3 (3-C of isomer A), $28.1\left[\mathrm{OCH}_{2}-\right.$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $4.03(2-\mathrm{C}), 44.0$ ($6-\mathrm{C}$ of isomer A), 44.8 ($6-\mathrm{C}$ of isomer B), $71.4\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 119.3(4-\mathrm{C}$ of isomer B), 120.0 ($4-\mathrm{C}$ of isomer A), 121.8 ($2^{\prime}-\mathrm{C}$), 133.6 ($\left.1^{\prime}-\mathrm{C}\right), 135.8$ ($5-\mathrm{C}$) and $155.8(\mathrm{~N}-\mathrm{C}=0)$; m/z $237\left(\mathrm{M}^{+}\right)$.
Isobutyl 3-(prop-1-enyl)-1,2,5,6-tetrahydropyridine-1-carboxylate 10b. Column chromatography (ethyl acetate) gave a green oil ($1.25 \mathrm{~g}, 56 \%$) which consisted of a mixture of geometric isomers 10b in a ratio of 3:2 (A:B) (Found: C, 70.2; $\mathrm{H}, 9.3 ; \mathrm{N}, 6.4 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 9.5 ; \mathrm{N}, 6.3 \%$); $v_{\max }(\mathrm{K} \mathrm{Br}$; liquid film$) / \mathrm{cm}^{-1} 1710(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ isomer A: $0.92\left[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.1, $\left.3^{\prime}-\mathrm{H}\right), 1.92\left[1 \mathrm{H}\right.$, septet, J $\left.6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.22(2 \mathrm{H}$ br s, 3-H), $3.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5,2-\mathrm{H}), 3.88\left[2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{OCH}_{2}\right.$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $4.03(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{H}), 5.53\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 5.70(1$ H, br s, 2'-H), 5.72 (1 H, br s, 4-H); isomer B: $0.92[6 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6$, $\left.0 \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.75\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6,3^{\prime}-\mathrm{H}\right), 1.92[1 \mathrm{H}$, septet, J $6.6, \mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], $2.22(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}), 3.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5$ $\left.2-\mathrm{H}), 3.88[2 \mathrm{H}, \mathrm{d}, \mathrm{J}) 6.6, \mathrm{OCH} \mathrm{CH}^{2}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.06(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$, $5.55\left(1 \mathrm{H}, \mathrm{m}, \mathrm{2}^{\prime}-\mathrm{H}\right), 5.70(1 \mathrm{H}, \mathrm{br}, 4-\mathrm{H})$ and $6.03(1 \mathrm{H}, \mathrm{brd}$, J 15.8, $1^{\prime}-\mathrm{H}$); $\delta_{\mathrm{c}}\left(20.12 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 14.8$ ($3^{\prime}-\mathrm{C}$ of isomer A), 18.1 ($3^{\prime}-\mathrm{C}$ of isomer B), $19.1\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.2,29.7$ (3C), $28.1\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right], 40.2,40.6(2-\mathrm{C}), 43.4$ ($6-\mathrm{C}$ of isomer A), 46.1 ($6-\mathrm{C}$ of isomer B), $71.5\left[\mathrm{OCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $122.5(4-\mathrm{C}$ of isomer B), 124.4 ($4-\mathrm{C}$ of isomer A), 125.8 ($2^{\prime}-\mathrm{C}$ of isomer B), 128.8 (2^{\prime}-C of isomer A), 131.4 ($1^{\prime}-\mathrm{C}$), 133.7 ($5-\mathrm{C}$) and 155.8 ($\mathrm{N}-\mathrm{C}=0$); m/z $223\left(\mathrm{M}^{+}\right)$.

Alternative preparation of the diene 3a by reductive alkylation of 7a and subsequent dehydration

To a solution of the ketone 7 a ($2.0 \mathrm{~g}, 10 \mathrm{mmol}$) in dry diethyl
ether ($100 \mathrm{~cm}^{3}$) was added ethylmagnesium bromide ($3 \mathrm{~m} ; 4.7$ $\mathrm{cm}^{3}, 14 \mathrm{mmol}$) by means of a syringe under argon at room temperature. The solution was refluxed for 4 h and then poured into ice-cooled saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated, and the aqueous phase was extracted with diethyl ether ($2 \times 50 \mathrm{~cm}^{3}$). The combined ethereal layers were washed with water and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated in vacuo. The resulting alcohol ($1.8 \mathrm{~g}, 80 \%$) was dissolved in THF ($40 \mathrm{~cm}^{3}$) and hydrochloric acid ($2 \mathrm{~m} ; 10 \mathrm{~cm}^{3}$) and the solution refluxed for 2.5 h . A fter neutralisation with 2 m aqueous NaOH the mixture was extracted with diethyl ether (3×20 cm^{3}) and the combined extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent in vacuo furnished a yellowish oil which was purified by column chromatography (diethyl ether-light petroleum, 1:1) to yield $3 \mathrm{a}(1.67 \mathrm{~g}, 65 \%$) (ratio $\mathrm{A}: \mathrm{B}=4: 5$).

R eferences

1 H. Drautz, H. Zähner, E. K upfer and W. K eller-Schierlein, H elv. C him. Acta, 1981, 64, 1752.
2 A. K arrer and M. D obler, H elv. C him. A cta, 1982, 65, 1432.
3 A. P. K ozikowski and P. J. Park, J. Am. Chem. Soc., 1985, 107, 1763.
4 A . P. K ozikowski and P. J. Park, J. Org. C hem., 1990, 55, 4668.
5 C. J. Flann and L. E. Overman, J. A m. Chem. Soc., 1987, 109, 6115.
6 H. Y amada, S. A oyagi and C. K ibayashi, J. Am. Chem. Soc., 1996, 118, 1054.
7 S. G rabley, H. K luge and H. U. Hoppe, A ngew. C hem., 1987, 99, 692.

8 M. W iesner and J. Thiem, J. C arbohydr. C hem., 1989, 8, 705.
9 T. A. M ontzka, J. D. M atiskella and R. A. Partyka, Tetrahedron L ett., 1974, 14, 1325 and references cited therein.
10 S. N ahm and S. M. Weinreb, Tetrahedron Lett., 1981, 22, 3815.
11 A. Basha, M . Lipton and S. M. Weinreb, Tetrahedron Lett., 1977, 48, 4171.

[^0]: \dagger The numbering of protons in the ${ }^{1} \mathrm{H}$ N M R spectra runs clockwise around the pyridine ring, as shown in Scheme 1 for compound 4. This is opposite to the system of nomenclature which runs in the opposite, anticlockwise, direction.

